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Explicit expressions for the electrostatic potential, the electric field and the 
electric field gradient at the nuclear positions of a crystalline lattice are 
presented. They are derived for a charge density given as an expansion in 
terms of spherical harmonics around the nuclear sites and as a Fourier series 
in the interstitial. These expressions can be decomposed into contributions 
from the spherical region centered around the lattice site of interest, from 
spherical regions surrounding all the other lattice sites and a contribution 
from the interstitital region. 
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I. Introduction 

The calculation of electrostatic potentials, electric fields and field gradients is a 
fundamental problem in solid state physics. An important application is the study 
of the interaction of a nuclear electric quadrupole with the electric field gradient 
created by the surrounding crystalline lattice [ 1, 2]. Since the electric field gradient 
depends on the electric charge density around the nuclear site, its evaluation 
provides valuable information on the chemical bonding. 

The formalism given here can be applied in all cases where from a given charge 
density, expanded in spherical harmonics inside spherical regions around the 
lattice points and as a Fourier series in the interstitial, the electrostatic potential, 
the electric field and the field gradient have to be calculated. 

Although various methods are available [3-6] to solve Poisson's equation for a 
general charge density thus obtaining the electric field and the field gradient by 
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appropriately differentiating the potential with respect to x, y, and z, the proposed 
method based on the decomposition of  the charge density according to Rudge 
[4] allows a corresponding decomposition of the electric field gradient and hence 
a better interpretation of the results. Moreover, the present approach is also 
applicable if a full potential is not available, and therefore no direct differentiation 
of the electrostatic potential is possible, without having to generate a full potential 
from the given charge density. Although reliable results for the electric field 
gradient can only be obtained from an accurate charge density (e.g. as computed 
by the full potential APW or LAPW method) or if corrections according to 
Sternheimer [7] are applied, ratios of electric field gradients of an atom in two 
non-equivalent positions can be calculated using much simpler computational 
methods. 

2. Theory 

The electric field at a lattice point is defined as the negative derivative of the 
electrostatic potential V with respect to the cartesian coordinates xi, i =  1, 2, 3 
taken at the nuclear site 

aV ," (1) 
E i = -- a x--~i 

Taking the second derivative of the electrostatic potential with respect to xi, the 
components of  the electric field gradient tensor are obtained 

02V ] 
- ( 2 )  

axi axj ,, 

Since there is no interaction of a nuclear quadrupole with a potential caused by 
s electrons, the electric field gradient is defined more appropriately [8] as a 
traceless tensor 

~ _  02V [ 1 t~ijV2 V 
ox, oxj . - 3  ." ( 3 )  

The definitions (1) and (2) are the standard definitions used by experimentalists. 

From the theoretical point of view, however, it is more convenient to use the 
spherical tensor notation because electrostatic potentials (the negative of the 
potential energy of the electron) and charge (or, alternatively, electron) densities 
are usually given as expansions in terms of  spherical harmonics. In this way one 
automatically deals with traceless tensors. 

In order to obtain the electric field gradient as a spherical tensor, we start from 
the electrostatic potential centered at the i-th nuclear site 

v( , , )  = f P(";) drl. (4) 
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Instead of using the ordinary spherical harmonics in the Condon-Shortley phase 
convention, we introduce modified spherical harmonics according to Brink and 
Satchler [9] 

C~' = 4 2 ~  1 YT' (5) 

thus writing the formulae in a simpler form. With the following expansion 

1 C•*(r ' i )  
- r , C ,  (r ,)  ~ (6) [ri - r~] Y~ E t m 

I m ri  

an asymptotic expression for the electrostatic potential is obtained that is valid 
for [r~[-+ 0 because of the condition on which Eq. (6) is based 

v ( r i - , 0 ) = E y  ' " *  m r,V,;i  C ,  (r~) (7) 
I rn 

where 

I m r 
m C ,  (r~) 

V,;i = p(r~) ..-777777 dr'i. 
ri  

(8) 

It should be noticed that in the above equations p(r~) denotes the charge density 
and not the electron density. 

Eq. (8) already defines the tensor components of the electric field (for l=  1) and 
of the electric field gradient ( /=2)  but does not necessarily indicate the most 
suitable way of how these quantities can be obtained. 

Before proceeding further it seems to be worthwhile to consider the electrostatic 
interaction energy between a nuclear charge distribution p, (vi) and the potential 
(7) 

g~ = f p,(r~) V(r,) dr,. (9) 
J 

Inserting Eq. (7) into Eq. (9) one gets 

< = 2 E  , l m * , ~  
-1;, ,et~ (10) 

1 m 

where 

Q,;i | l m m = j r i p . ( r i ) C ,  (ri) dri (11) 

is the nuclear multipole moment written as a spherical tensor. The definition of 
the multipole moments in the present paper is thus in agreement with Brink and 
Satchler [9] but is different from Ref. [10]. 
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Eqs. (7) and (10) can be interpreted as scalar products of two tensors of rank l 
m rtl m m 

(Vt;~, Cl (r~) and VI;~, QI;~, respectively) which are tensors of zero rank (scalars), 
namely the electrostatic potential V(r~) and the interaction energy g~. 

The / = 0  term in Eq. (10) describes the interaction between the spherically 
symmetric potential V~oa and the point charge o Qo;~, the l = 1 term the interaction 
of an electric field VI~ with a dipole moment Q~;~ and the l = 2 term the interaction 
of an electric field gradient V2~ with a quadrupole moment Q2"~. 

The following derivation starts from a crystalline charge density which is expanded 
in terms of spherical harmonics inside spheres centered at the nuclear positions, 
the so-called atomic spheres, and which is given as a Fourier series elsewhere 

E E i l ~ * ( I  r - r,I)C?(r - r , )  + Z , a ( r  - r,) 
l m 

il(r) = .  (12) 
E il(K) e ~" 
K 

where the expression in the first line of Eq. (12) refers to the i-th atomic sphere 
and the second line on the right hand side of (12) represents the charge density 
between the atomic spheres. Z~ is the i-th nuclear charge. The higher nuclear 
moments can easily be neglected since they are too small to have any influence 
on the results. 

According to Rudge [4] the charge density (12) can be split up into three 
electrically neutral parts for which Poisson's equation 

V2 V(r) = -41ril(r) (13) 

can be solved separately 

il(r) =il,(r)+ Z il~,,.,(r)+ g m,~.i(r) 
l m i  l m i  

(14) 

where 

ill(r) = Z il(K) e i t "  for all r 
K~o 

i I 

I { i l ~ * ( I , -  r,I) -2-~-~ ~ 2,(/r I r -  r , I ) i l (~ )c  ~"*(~) e " ' .  

il=imi(r) =~ (O~* -Z~a,o) . . . . . . . .  [ - Tr+ otr-r,. l 

0 

I ~ 
- 6 z o - I  6(r-r l )C'[(r-r~)  

il~,m,(r) = (2/+ Z)lr- r,l' 

l-- Q ~  31o 

(15) 

(16) 

(17) 
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In Eqs. (16) and (17) f l  is the volume of the unit cell, j~(Kr) is a spherical Bessel 
function and Q~"~ is the multipole moment defined by 

4re f o ~' m r l + 2  m f r  ~ QI;~ = Zif~lo q-2-- ~ Pl;i[ ) dr 

_ 4rr(_D~R,+2 V j~+~(KR~) / , ~ p ( K ) '  C ' ~ ( K )  e -K',  (18) 
K 

where R, is the radius of the i-th atomic sphere. 

We now give the solutions of Poisson's Eq (13) for the three contributions.to the 
total charge density (15-17). For the first two partial charge densities we closely 
follow Rudge [4]. 

2.1. The Fourier series problem 

The solution for pl(r)  is immediately obtained as 

4~-p,(K) e 'K'.  (19) 
V,(r) = E K 2 

K # 0  

The term for K = 0, which is excluded from the summation in Eq. (19), represents 
the average of Vl(r) over the unit cell. It is therefore taken to be zero in Eq. (19). 

In order to obtain an expansion of V~(r) around the i-th nuclear site we write 

e iK ' '  : e iK'r' e iK ' ( ' - r* )  (20) 

and use the well-known expansion 

e 'g( ' - '? = Y~ ~ (21 + l ) ig , (K[r  - r, I) c ~*(K) C r,). (21) 
l m 

We can thus extract the /m-contribution to V~(r) around the i-th nuclear site 

,~ p ( K ) .  , 
Vllrni(roi ) =47r(21+ 1 ) L o - - ~ j , ( K  r - r i [ )C~ '* (K)  e 'K'"CT(r--r , )  (22) 

w h e r e  roi = r -  ri. 

2.2. The zero multipole moment  problem 

For the charge density p2~.ni(r) the muir, pole moments Q~"~i are chosen in such a 
way that all atomic spheres are electrically neutral and all higher multipole 
moments disappear. This means that the charge in each atomic sphere only gives 
rise to a potential within the same sphere but not outside of it. We can therefore 
write 

f p2,mi(r;,) 
V2,m,(ro,) = Iro,- r'o,I dr'o,. (23) 
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Inserting (16) into (23) and expanding according to Eq. (6), the result for the 
i-th atomic sphere reads [4] 

{ 1 fl'-'~l 1- 47r m * l r - - r i ]  t+l ao 

E j , (Kx)p(K)C '~*(K)  e""l dx 
K J 

I ' R  i F 4 
1--1 ~ m ~  

+1, - , ,1 '  I x 12-T~p,;, (x) 
d i r - r i l  LZ.t * 

~j , (  K x ) p ( K ) C ' f * ( K )  e 'K'',] dx ~ 4 ~ i  I 
K I 

(z,a,o q~*)"[ C~'(r- r,). (24) -2 
I , - <  '§ J 

This equation can be simplified by carrying out the integration over the two 
Fourier series using [11] 

fl -'L x'+2y,(~) dx = 

i,-,/§ 
T j / + I ( K I r -  ri[ ) (25) 

and  

I R, xl-~it(Kx) dx jt_,(Klr_r,l) j,_l(KRi ) (26) 
. . . .  I = K i t -  ri[ l-I KRI, -1 

and the recurrence relation [11] 

2l+1 jI+I(X) q - j l _ l ( X )  = - - j I ( x )  (27) 
x 

Eq. (24) can therefore be written as 

V=im,(ro, = 4rr lr,]l+l - '  ,+2 m*r r - -  X P l ; i  tx] dx 

f" ] x p, ;~  (x) dx 

p(~) I-KI,.-,.,I' 
+4~'fl Z --K-5- 

- (2/+ l ) j t ( K I r -  ,,I)] c r * ( ~ )  eiK.r, 

(z,~,o-Or.*) 1 +2rrp(O)([r-r'12-R2)6,o 4 CF(r- r , )  (28) 
3 [ , - ,J '+l  .I 

where the K = 0 term of the Fourier series, which is given separately, is chosen 
in such a way that this partial potential is zero outside the atomic spheres. 
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2.3. The point multipole problem 

The problem now is to solve Poisson's equation for an array of point multipoles. 
In the special case of point charges a constant charge density over the whole 
crystal lattice is required to maintain electroneutrality. This problem was solved 
originally by Rudge [3]. Here we use a different approach which is more convenient 
for the present purpose. To some extent we follow the work by Herzig and Neckel 
[10] where an expression for the electrostatic interaction energy has been derived 
along similar lines. The formalism is also similar to the approaches of Nagel [ 12] 
and Hama [6]. 

We first consider the potential around the i-th lattice site caused by a charge 
distribution centered at the i'-th nucleus 

i' r pr(roi,) 
Vi(roi) = - irir_roi,+ roi[ droi, (29) 

where the vector r., points from the i'-th to the i-th nuclear site. 

We now expand I t . , - r o r +  roi1-1 according to Steinborn [13] and obtain 

m + r n '  
i '  Vi(roi)-= 2 ~ ~(l 'm',  lm)Q~,  Y,+r (r,,) r~oiC,p(roi) (30) 

lm I'm' rlii +' l+ l 

where 

q3(l,m,,lm)=(_l)l((21:__~l,+l) ( I + l ' + m + m ' ) ! ( l + l ' ~ m - m ' ) [  ~ 1/2 

(31) 

In order to generalize this result for a crystal lattice one has to sum over all 
multipoles i' and perform the lattice summation 

m-t- rfl' (Rj- r) 
q'z+r ( r ) = Z  : IRj_rV+,+ , (32) 

which can be done following Nijboer and de Wette [14]. It should be noted that 
in Eq. (32) the ordinary spherical harmonics and not the modified ones as defined 
in Eq. (5) are used in order to keep the compatibility with Refs. [10, 14]. 

The complete potential V3,,t; is obtained by adding the contributions from the 
multipole moment of the i-th sphere as well as a quadratic term originating from 
the constant charge density 

Q,TF 
V3,mi(roi) 

+ F, ~(l 'm',  m, m+m'. _ lm)Qr;~,*H, (ri--rr)lr rd 'Cr ( r - r i )  (33) 
l'ra'i' 

where r,, = ri - rr. 

The average value over the unit cell of the partial potential (33) is zero. 
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Adding the partial potentials (22), (28) and (33) several terms cancel each other 
and the result is 

r -  ;/1/+1 oo x Pl;i txJ dx 

+ I , -  r,l' ,-, m, x Pl;i (x) dx 

p (K)  j,_~(KR,) CT**(K) e '~" +41ritlr-ri[ '  ~ , - t  ' 
Keo K Ri 

4 Z,6 to  2"n'R~p (0) t5lo 

lm)O, , : r~ ,§  (r,-,,,)lr- r,l'} + ~, C~(l,m, ' ,1, m+m', C T ' ( r -  t,). 
Fm'i' 

(34) 

The asymptotic expansion for roi ~ 0 of the potential (34) is obtained by collecting 
the terms which represent the solutions of Laplace's equation regular in the origin 

4rr f R, XI-I~m*I'X ~ 
Vtmi(r~ Jo m;i t J dx 

+4"rri I ~ p(K)j,_,(KRi),_I C'~*(K) e iK''-2rrR~p(O)61o 
K~o K R~ 

lm)Or;r~t+r (r, } + • Cr ' ,~, m+m'. --ri') I r - r , l 'CT ' ( t - r , ) .  
l'm'i' 

(35) 

From a comparison of Eq. (7) with Eq. (35) the expansion coefficients vlm~ are 
obtained 

4~r Io & m l--I  m 
V t : i - 2 1 +  l x pt;i(x) dx-2crRZ~p(O)6~o 

K ~O ' K" Jt-I( KRi) e--iK'" +47r ( - i ) '  S Ot ) ~  CT'(K) 

Im)Qr..i, ~t+t' ( r i -  rr). + ~ Cr ' m'. m+m' 
l'm'i' 

(36) 

Taking 1 = 0, 1, 2, in Eq. (36) one arrives at the respective expressions for the 
electrostatic potential, the electric field and the electric field gradient at the nuclear 
site i 

Io ~ cos KR~ e_iK.ri V~o;,=4~" xp~ d x + 4 ~  Y~ p(K)---~-- 
K # O  

+ Z . / 4 ~ -  OF:',*~?,'(r,-1",,)-2~rR~p(0), (37) 
r..'i' ~/21'+ 1 - " 
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Vm _47r fn '  m jo( KR ) 
1;i- 3 Jo pl;,(x) dx+47riK#o y" P ( K ) ~  C'~(K) e-'K'r' 

+ • Cg(l,rn, ' m,. .,+m, lm)Qe;,.~,+l, (r,-r,,), (38) 
l'm'i' 

4"lT f R' P2m"i(X) dx-47r E P(K) jl(KR') CT(K) e -'K" 
V2~i =-~- 30 x ~'o KRi 

.j_ ~ l t rn'~ m+m' Cg(l m ,  2m)Qt,;~, q*2+r (ri-  ri,). (39) 
I'm'i" 

Two important points have to be noticed in an application of the formalism given 
above. First, it might be necessary to shift the potential calculated from Eqs. (37) 
or (34) to adjust it to the appropriate zero. This problem is discussed in the 
papers of Rudge [3, 4]. Secondly, there is the problem of convergence of the 
series involved. For the electric field gradient the lattice sums are absolutely 
convergent if a neutral basis is assumed. The electric field is well-defined if the 
unit cell is electrically neutral and does not have a permanent multipole moment. 
In the former case the electric field is infinite, in the latter case it depends on 
the shape of the crystal [15]. For the electrostatic potential the series diverge if 
the unit cell is not electrically neutral or carries a dipole moment and is condi- 
tionally convergent for a unit cell having a permanent quadrupole moment. It 
can be shown to depend on the quadrupole moment of the unit cell if the Ewald 
method is used [16]. In the present formalism electroneutrality is always guaran- 
teed by the presence of a constant charge density. 

Before we come to a discussion of the present formalism a recipe shall be given 
for the conversion of the spherical components of the electric field and field 
gradient tensors, as defined by Eq. (8), into the components of the corresponding 
traceless cartesian tensors. For an investigation of the general case see the work 
by Normand and Raynal [17]. 

With the conventions of the present paper one finds for the electric field 

1 
Ex = - ~  (V' , -  V~-') (40a) 

i ~ --~ (Vl+ V?) (4Oh) 

E~ = - V~ (40c) 

and for the electric field gradient 

,/5 
d~= = ~  V~- rV~2+~ V~ 2 (41a) 

"/3 ,/5 
~yy = - - ~  ~2--'- '~ V~ 2 (41b) 

qbzz =2V~2 (41c) 
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, 5  2 ,5  
= V2+ i~-~ V~ -2 (41d) 

, 5  1 ,5  
~yz = ' ~  V2+ i ~  V~ -1 (ale) 

,5  i ,5 �9 xz- ~ v2+~-~ v~ -1. (41f) 

3. Discussion 

Eqs. (37)-(39) represent expressions for the electrostatic potential, the electric 
field and the electric field gradient at the lattice sites of an infinite crystal as 
obtained from a general charge density. Special cases, mainly restricted to point 
multipole lattices, have been attracting interest for a long time. A few papers 
shall be mentioned here, namely the calculation of the internal electric field in 
dipole lattices by Nijboer and de Wette [15], the calculation of electric field 
gradients in point ion and uniform background lattices by de Wette [ 18] and the 
calculation of electrostatic potentials and fields [19, 20] and field gradients [19] 
in point charge lattices. 

For a physical interpretation of the terms in Eqs. (37)-(39) a little manipulation 
is necessary because the Fourier series in these equations extend over the whole 
crystalline lattice although they have a definite meaning only in the interstitial 
region. To overcome this difficulty the multipole moments defined in Eq. (18) 
have to be split up into two parts. The first one contains the first two terms of 
Eq. (18) and is nothing else than the multipole moment of the atomic sphere 
around the lattice site i. The last term of Eq. (18) represents the correction for 
extending the Fourier series into the atomic spheres. If the last terms of Eqs. 
(37)-(39) are split up correspondingly the following interpretation is possible: 
The first term in Eqs. (37)-(39) describes the contribution of the atomic sphere 
around the lattice point of interest, the second term plus the corresponding part 
of the third term represents the contribution of the interstitial region and the 
remainder of the third term the contribution of the other atomic spheres. 

The formalism given in Sect. 2 can be applied to all practically occurring cases. 
If point multipole lattices have to be considered only the lattice summation part 
of the approach needs to be used. 

The practical application of the present formalism will be demonstrated in a 
forthcoming paper [21] where an ab initio calculation of the electric field gradients 
in Li3N from a full potential LAPW charge density is presented. 
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